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3-1 INTRODUCTION

The design of a water-resource system is dependent, in part, upon the
sequences of streamflow that are assumed to be realized over the system’s eco-
nomic life. Because these sequences are unknown, the design must in some
way be based upon historical sequences, which could be taken to represent the
sequences that will be realized in the future. In doing so, there is the implied
assumption that the past will be repeated—an unrealistic assumption. The use
of historical sequences to represent future sequences subjects the design to risk
and provides no basis for assessing the risk or evaluating the losses associated
with a system that is under- or overdesigned to an unknown extent.

More realistically, streamflow is assumed to be a stationary stochastic
process. Under this assumption, the past is repeated in a statistical sense—the
statistical characteristics of the process are independent of absolute time (sta-
tionarity). Given the generating mechanism of the process, an ensemble of fu-
ture sequences can be generated. While no one member of the ensemble can be
identified as being the sequence that will be realized in the future, the members
collectnvely represent a set of sequences, each of which is equally likely to be
real:zed in the future.
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Given the ensemble of future sequences, alternative designs of a water-
resource system can be evaluated in terms of each member of the ensemble.
This affords tht_: planner.a quantitative measure of both the anticipated perform-
ance and the risk associated with each design. The use of such sequences in
water-resource .system planning has been discussed extensively by Hufschmidt
and Fiering,' Fiering,* and more recently by Fiering and Jackson.?

Unfortunately, the generating mechanism of streamflow is unknown, and
therefore the ensemble of future flow sequences cannot be generated. The
mechanism, however, can be approximated, and with the added assumption
that streamflow is an ergodic process, an ensemble of “future” flow sequences,
referred to as synthetic flow sequences, can be generated, The assumption of
ergodicity allows time averages to be used for corresponding ensemble
averages.

Over the past decade, an extensive body of literature has developed cov-
ering techniques for generating synthetic flow sequences. For the most part,
the techniques have been based on the use of short-memory processes to ap-
proximate those of streamflow. More recently, long-memory processes have
been introduced to approximate long-term persistence that is evidenced by
many historical flow sequences. Fiering? and Fiering and Jackson® have
provided excellent summaries on the use of short-memory processes, particu-
larly markovian-type processes, for generating synthetic flow sequences.
Mandelbrot and Wallis,* Wallis and Matalas,® and Matalas and Wallis® have
considered long-term hydrologic persistence and the use of fractional noise
processes to account for this persistence in generating synthetic flow

sequences. -

In the following paragraphs, some of this literature is briefly reviewed.
For the most part, attention is paid to some of the operational problems in-
volved in generating synthetic flow sequences on a multisite, multiseason basis,
including those which derive from the “paucity” of streamflow data, as well as
those that derive from the operational constraints of model building.

3-2 GENERATION OF SYNTHETIC FLOWS

A historical flow sequence X(1),..., X (n) may be characterized by a set of
statistics © =1{0,,...,0,}. For example, #;, may denote the mean and
f,, the standard deviation. From the historical flow sequence, estimates of
6, ¥ i may be obtained. To generate synthetic flow sequences, a model must
be chosen to approximate the flow’s underlying generating mechanism. This
model serves to transform a sequence of random numbers, n(1),...,n (i)
into a sequence of synthetic flows, Y(l),...,Y(i). By using several
sequences of random numbers, all drawn from a common population, several
synthetic flow sequences may be generated to form the ensemble of “future”

flow sequences. .
Via simulation of a proposed water-resource system, the ensemble of syn-
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used to derive a set of outputs which measure the
uld be noted that, for each synthetic sequence,

several measures of performance may be considered relative to the p.urpose.s to
be served and objectives to be met by the system. For each alternative design,
a set of system outputs can be obtained. The variations in system performance
provide a basis for assessing the risks inherent in each design. ;

For a realistic assessment of the risks to be taken—risks upon which the
selection of the “‘best” design is derived—the synthetic flow sequences must
themselves be realistic realizations of the future flow sequence. Under the as-
sumption that streamflow is an ergodic stochastic process, the statistlc'al c}]ar-
acterization of the future flow sequence will not differ from that of the historical
sequence. Thus the synthetic flows must be generated in a manner that assures
this statistical resemblance. Given the set of statistics ©, a model and a popula-
tion from which random numbers are to be drawn must be chosen so as to as-
sure statistical resemblance between the historical and the synthetic flow
sequences, Before discussing these choices, a definition of statistical resem-
blance is in order.

One definition of statistical resemblance is as follows. From a synthetic
sequence of length 7, the set of statistics © corresponding to the historical set
O is obtained. The synthetic sequence is said to resemble the historical
sequence if &, — 6, V i as i — «, But infinite synthetic sequences are of little
use. What matters is the ensemble of synthetic sequences of length 7. For
each synthetic sequence of length 7, the set of statistics § are obtained
whereby the set * may be formed, where 6 is the average of the ensemble of
values of 8. If 8} — 6, as m — =, where m denotes the number of synthetic
sequences forming the ensemble, then each synthetic flow sequence is said to
resemble the historical flow sequence.

g, is an estimate obtained from a historical sequence of length n. In
generating synthetic flows, 6 assumed the role of a population value and 0,2
sample value. If indeed @, is an unbiased estimate of 6, then the two definitions
of statistical resemblance are equivalent. However, estimates for many statis-

tics are biased. If the bias depends upon only 7 and tends to zero as i1 — =,
then an infinite synthetic sequence will statistically resemble the historical
sequence, but each finite synthetic sequence will fail to do so.

Later the matter of biased estimates will be discussed, but for now, the as-
sumption is made that 8, is an unbiased estimate of 6, V i, What model should
be chosen to approximate the generating mechanism of streamflow? There is
no simple answer. More than likely, one will be compelled to choose a
prescriptive rather than a descriptive model.® By a prescriptive model is meant
one that will assure statisrtic.al resemblance relative to the set ©, This model
may or may not be descriptive of the real world. One of several models may
suffice, in yvhnch case the choice may be made on the basis of which model

place:vs minimum dem.ands on data or computation. As long as the distribution
function of }he flows is not of concern, an operational choice may be made for
the population from which random numbers are to be drawn. The population

thetic flow sequences may be
system’s performance. It sho
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need only have finite statistics corresponding to the statistics forming the set ©,
If the distribution of_ the flows is of concern, problems, some of which are dis-
cussed below, arise in choosing the population.

3.3 STREAMFLOW STATISTICS

The above discussions have dealt with the generation of an ensemble of syn-
thetic flow sequences at a single site. In general, the design of a water-resource
system will entail the generation of an ensemble of synthetic flow sequences of
a multisite, multiseason basis. The definitions of statistical resemblance dis-
cussed above apply to the multisite, multiseason case.

The flow for the rth year at the jth location may be denoted as X(t]/),
wherer=1,...,nandj=1,... L, The term location is used to indicate a site
or a season or a combination of site and season. If N and Z denote the number
of sites and seasons, respectively, then X (11j) may represent one of the follow-
ing cases:

1 Single site, single season: L = |
2 Multisite, single season: L = N
3 Single site, multiseason: L = Z
4 Multisite, multiseason: L = NZ

A random variable may be described by a set of ensemble averages. Of
particular importance are the expected value E[X(t]/)], the second moment
or variance E[x*(1|j)], and the third moment E[x*(1]j)], where
x(1]j) = X(t|j) — E[X(¢]/)], which provide some meaningful description of
the probability distribution of X(r|j). Under the assumption of stationarity,
each ensemble average holds ¥r. Unfortunately, for each location, only one
realization of the stochastic streamflow process is available, namely, the n
years of flow forming the historical sequence. With an infinite historical
sequence, the time averages u(X|j), a*(X|j), and A(X|}j), corresponding to
the ensemble averages E[X(r]j)], E[x*(¢|j)], and E[x*(1]j)] theoretically
could be computed. If the stochastic process is ergodic, then the ensemble
averages are equal to their corresponding time averages.

Under the assumption of ergodicity, estimates of the time averages
derived from the finite historical flow sequences may be taken to be estimates
of the corresponding ensemble averages. These estimates are defined as

follows:

3 X(l))

. N I | -
X)) =B (3-1)

i x*(rlj)
BUXL]) Wiy 3-2)
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$ 3 (el))
R(X)) = e (3-3)

where x(¢11/) = X (1) = k(X|D). Quite often, the coefficient of skewness,

defined ns
“ : AMX L)
= -4
#X1D = 3515 (3-4)
rather than A (X]/), is used as a statistical descriptor of streamflow.
: To describe the multivariate structure of the historical flow sequences,
various statistics may be used. For now, only two statistics are considered:
(1) the covariances between the flow at different time points at a given loca-
tion, and (2) the covariances between the flows at different time points at two

given locations,
The estimates of the covariances at a given location are as follows:

S xul) x (¢ + kL)
C(X |kJj) ==——7 (3-5)

Note: x(zlj) = X(2|j) — in(X|k,j) and x(z+k[j) =X(1+ klj) — i (X|k'\J)s
where
n—k

S Xl
b (XIk) =E— 66
S Xt + kL)
AX R =y (-7

The corresponding correlation coefficient is estimated by

; L C(Xlk)) '

ra—k ! 1/2
where o (X|k.Jj) = ,2,: x’(:b)] (3-9)
L n—k
) . ['l—k ’ 1/2
o (X|k',j) = E,“" ('“‘L’)J (3-10)
E n—k

The estimates of the covariances pertaining to two given locations « and
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p are as follows:

n—=k

A 3 x(tlu)x(t + k|v)
— =1
el i (3-11)
and the corresponding correlation coefficients are estimated by
f __ C(XIk,u,v)
p(X k‘ ,v) = y iy
i lk,u) o (XK', 0) (3-12)

Still other statistics could, and perhaps should, be considered in statis-
tically describing streamflow sequences. One in particular is the Hurst coeffi-
cient. To define this statistic, consider once again a historical flow sequence
- at a single site X(1),..., X(n). The variable )

i
Y(i) = 2 x(1) (3-13)
=1
denotes the cumulative departures from the observed sequence mean, a(X).
If Y(i’) and Y (i") denote the minimum and maximum values of Y(i), then

RX) =Y(i") — Y(i") (3-14)

the range of cumulative departures, is the minimum storage needed to meet a
draft equal to fi(X) over the period of n years

In his studies of long-term storage requirements, Hurst”® noted that for
many long sequences of natural phenomena,

R(X) _
&(X)

Hurst? and, independently, Feller,® showed that for a purely random normal
process, h —> % as n — «. From a large number of sequences of natural phe-
nomena, Hurst found estimates of /i to have a mean and standard deviation of
about 0.73 and 0.08, respectively. The tendency for estimates of /4 to be
greater than % is referred to as the Hurst phenomenon.

The statistic / is a measure of long-term hydrologic persistence—the ten-
dency for high flows to follow high flows and for low flows to follow low flows
over long periods of time. The statistic p (X|k) is a measure of short-term per-
sistence. If the generating process of streamflow belongs to the Brownian
domain of attraction, then # =% and p (X|k) is a measure of the existing short-
term persistence. Outside this domain, there exist generating processes for
which h # 4 (Mandelbrot and Wallis®). If indeed & > 4, then the use of a
generating process characterized by h =$ will yield synthetic sequences such
that R(X), the storage requirement, is underestimated. R(X) will be overes-
timated if the synthetic sequences are generated by a process for which / >4
when indeed streamflow is generated by a process for which & = 1.

nh (3-15)
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In practice, other factors beside the inflows affect the design capacity of a
reservoir. While R(X) may not be the design capacity, it is related to it, such
that under- or overestimation of R (X) is associated with under- or overdesign
of a water-resource system, either case involving economic losses. Some as-
sessment of these losses may be warranted in deciding whether or not synthetic
flow sequences should be generated by a model that assures statistical resem-

blance in terms of A.
Hurst? took as an estimate of 4,

_ log [R(X)/6(X)] ;
K log (1/2) (3-16)

Another estimate of / is defined by Mandelbrot and Wallis* as follows. The
sequence X(1),..., X (n) isdivided into sets of subsequences. Let »(i) denote
the length of the subsequences for the ith set, where i=1,...,n and
5 = »(i) = n. For the rth subsequence of the i set, the values R(X|r,i) and
o (X|r,i) are determined. If R(X|i) and & (X|i) denote the mean values of
R(X|r,i) and o (X|r,i) for the ith set, then the slope of the relation between log
[R(X|i)/o(X]i)] and log [»(i)], denoted by H, is an estimate of h.

- Wallis and Matalas' utilized Monte Carlo experiments to evaluate some
statistical properties of K and H, where H was taken to be a least-square es-
timate of 4. Both K and H were found to be biased and highly variable es-
timates of 4. In general, H is less biased but more variable than K.

While the statistics discussed above are by no means exhaustive, they do
provide considerable characterization of the multivariate structure of stream-
flow. Apart from y(X), only first- and second-order statistics have been con-
sidered. Higher order statistics could be considered, but because » is small,
generally less than 50, these statistics are subject to large sampling errors.
Moreover, to achieve statistical resemblance in terms of higher order statistics,

it would be necessary to generate synthetic flow sequences with more complex
models. Until such time as it is demonstrated that higher order statistics sub-
stantially affect the design of a water-resource system, there is little incentive to
generating synthetic flows to achieve statistical resemblance in terms of the

higher order statistics.
In the following discussions, statistical resemblance is limited to three

sets of statistics:

1 6,={p a7} U {p}
~ where iu={p(X|)) ¥ Jj}
o={o(X])V j}
y={y(X1)) ¥Jj}
p={p(X|k,j)V jand k= 1; p(X|k,u,v) ¥ u,v and k = 0,1}
2 6,={p 0,7} U {p*} |
where p* = {5(X|k,/) V jand k= 1; p(X|k,u,v) ¥V u,v and k =0}

3 6 =95 U {f’} 2
where h = {h(X|j) V j}; h may be defined as either K or H
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3.4 LAG-ONE MODEL
If the set of statistics O, is considered, then the lag-one model, defined as
X(t) =pu=A[X(t—1)""] + Be(t) (3-17)

might be used to generate synthetic flow sequences, where X (1), X (t — 1), and
¢() are matrices of random variables, and y, 4, and B are matrices of coeffi-
cients. X(7) and X(r — 1) are (L X 1) matrices whose jth elements X (¢|/) and
x(t— 1]j) are random variables of flows for years # and r — 1 at location j,
wherej=1,..., L. €(f)is an (L X 1) matrix whose jth element €(¢|;) is aran-
dom variable.

To define the elements of the (L X 1) matrix pand the (L X L) matrices
A4 and B, the following assumptions are made:

The process is ergodic.

plelk,)=0 VYV k#0,j
E[e(tlu)e(tlv)] =0 Vtu#v
E[e(t|u)X(T—=1|v)]=0 Vrtu+#v
E[e(t|))]=0 V1,

E[eilp]l=1 Vuj

The latter two assumptions, which lead to no loss of generality, are made sim-

ply for mathematical convenience.
For the matrix , the jth element p(x|/) denotes the expected value of the
flow for year ¢ at location j, E[X(¢|j)]. From the first assumption,

L= P N L FTR .

WX|)) =E[X¢|p] =E[Xt—-1[)] V1 (3-18)

Matrices M, and M, are defined as
E[x(£)][x(1)]" = M, (3-19)
E[x()][x(t—1)]"=M, C o (3-20)

where x(t) =X(t) —p and x(t—1)=X(t—1) —p The superscript T
denotes the operation of matrix transposition. M, and M, are (L X L) matrices

whose (u,v)th elements are
mo(X)u,v) = E[x(t|lu) X (tlv)] Vi (3-21)
my(X|u,v) = E[x(t|u) X (t=1[)] V1 (3-22)
Note for u = v, mo(X|u,u) denotes the variance of the flows at location «, and

for u # v, my(X|u,v) denotes the covariance of lag k = 0 between the flows at
locations u and v. For u = v, my(X|u,u) denotes the covariance between the

flows for lag K = 1 at location «, and for u # v, m;(X|u,v) denotes the cross
covariance between the flows at locations # and v for lag K = 1.
From the above assumptions,
E[e(t)][e()]T=1
E[e(n)][X(r—1)]"=E[X(t—1)][e(r)]"=0

where 7 is an (L x L) identity matrix and 0 is an (L X L) null matrix.

(3-23)
(3-24)
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If both sides of Eq. (3-17) are postmultiplied by [X (¢ = 1) — x]7, then the

expectation of the various matrix products leads to
A =M M;!

(3-25)

where Mg is the inverse of M,. Similarly, via postmultiplication of both sides

of Eq. (3-17) by [X(7) — u]” (Matalas'"),
: BB =M, — M, Mz* MT

(3-26)

The elements of B need not have any physical significance. If A denotes
an (L X L) matrix, such that AAT = /, then a matrix B*, defined as B* = BA,
wl]crf: B* B*" = BB, may be used in place of B in Eq. (3-17). Techniques of
principal component analysis (Kendall'®) may be used to solve Eq. (3-26) for
the elements of B. More conveniently, B may be transformed into a lower tri-
angular matrix B* whereby the elements of B* may be derived recursively

(Young'),

To illustrate a procedure for achieving statistical resemblance in terms of
skewness, assume the matrix B to be lower triangular. From Eq. (3-17), the

flow at time ¢ of the jth location may be expressed as

X =3 ag X (= 110) +3 bye(t]i)

Cubing both sides of Eq. (3-27) and then taking expectations leads to

Vel = 131 [AX1) = 3 ata XD ~3 5§ 4y 0 axIi)

i=1 =1 r=i+1
L-1 L
=33 3 akay N(X|i,r)
f=1 r=i41 4
-2 L—1

L
—-62 Z Z ay gy ay M X|i,r,u)

i=1 r=i+1 u=r+1
j-1

=3 biteli |
where V ¢,
AMX)) = E[x(1])]
MX[i) = E[x*(1]i)]
MXliyr) = E[x*(t]i) X (1]r)]
N(Xli,r) = E[x(1]i) x (1]r)]
AXiyr,u) =E[x(t]i) x (1]r) x (t]u)]
Y(el)) = E[e(]))]
Yeli) = E[eXt]i)]
bjo = 0 VJ

(3-27)

(3-28)

(3-29a)
(3-295)
(3-29¢)
(3-294)
(3-29¢)
(3-291)
(3-29¢)
(3-29h)
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Equation (3-28) may be solved recursively to obtain the set of skew coefficients
‘y(EI ])r sowy Y(EIL)'

As long as the distribution function of X (¢|/) is not of concern, €(¢|j) may
be assumed to follow any distribution, such that E[e(z]j)] =0,
E[eX1|)] = 1, and E[€%t|)] = y(e|j). The use of one distribution, namely,
the log-normal distribution, is illustrated. Let

Y(t]j) = p(Y])) 3.30

oY1) el

where Y(z]j) is log-normally distributed with u(Y|j) = E[Y(t]))], o(Y]}) =

{(E[Y() — wY|NIP™, and w(Y|j) = E[Y(]) — wY[DPleY]) =
y(elj). The random variable ¥(t|j) may be expressed as

Y(1]j) =exp[Z(1]))] (3-31)

where Z(1]j) is normally distributed with w(Z|j) = E[Z(1]j)] and

o*(Z|j) = E[Z(2]j} — p(Z|j)]% It is convenient to let u(Z|j) =0. Then
(Aitchison and Brown),

e(t]j) =

u(y|j = 2elz2li] (3-32)
o*(Y]j) = exp[20®(z]/)] = exp[o*(z]/)] (3-33)
'}‘(Ylj) — exP[30‘2(ZU)] -3 CXP[U'Z(ZU) +2 (3_34)

{exp[o®(z]))] — 1}

y(Y[j) = y(elj), so from Eq. (3-34), o*(z|j) is determined whereby Egs.
(3-32) and (3-33) yield the values of u(Y|j) and o*(Y|/). Thus, variate values
of €(1]j) may be obtained via the exponental transform of variate values
drawn from a normal population having mean zero and variance o*(z|j).

It should be noted that, to achieve statistical resemblance in terms of the
elements of O,, it is necessary to consider third-order terms besides those for
defining the skewness of the flows.

3-5 MARKOV MODEL
If O, instead of O, is of interest, it may be possible to avoid needless compu-
tation by expressing the lag-one model as

X(t) —p=A[X(t = 1) — u] + Be(1) (3-35)
where A denotes an (L X L) diagonal matrix whose (j,j)th element is
p(X|k=1,j) = p(X|k,j), and B is an (L X L) matrix whose elements are
given by the solution of

BB =M, — AM A" (3-36)
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i ' ime 1 at
The mairix & may be defined as being lower triangular, The flow at ime
the jth location is expressed as _
(3-37)

J :
x(1lf) = p(XI1) X (¢ = 1)) 4-’2 by €(1)i)
=

¢SS,
he flows are represented by a Markov proc-

which represents a Markov proc
jth element of

Because for each location t
ess, Eq. (3-35) is referred to as a Markov model. For the

Eq. (3-35),

©p(X|kj) = pM (Xlij) (3-38)
While Eqgs. (3-17) and (3-35)
in general, will not hold for

which is a basic property of a Markov process.
lying streamflow generating

are mathematically similar, the Markov property,
the jth element of Eq. (3-17). If, indecq, the under

process is markovian, 4 =A and B = B. : ¢
The lag-one model could be used to achieve statistical resemblance In
terms of the elements of ©,. However, it might be possible to reduce the com-
lements of A

putational load by using the Markov model. In determining the e
and B, the matrix M, need not be considered. Moreover, it is not necessary

to determine M;'. The skewness of e(7]) is defined as

y(eli) = 31 11 = PILDINE L) ~ :2 bividi) | (339)

where b, =0V j. Equation (3-39) may be solved recursively to obtain the
set of skew coefficient y(e[l1),..., y(e/L) whereby the variate values of
€(¢|/) may be obtained in the manner described for the lag-one model. It is
noted that far fewer computations are required to determine y(e|j) for the
Markov model than for the lag-one model. In particular, with the Markov
model, no third-order terms other than those for defining the coefficients of

skewness of the flows need be determined.

3-6 FRACTIONAL NOISE MODEL

Lag-one and markovian processes are characterized by values of # =4, as are
all processes which belong to the Brownian domain of attraction. Thus, if the
set of statistics ©; is of interest, then a stochastic process not belonging to this
domain of attraction must be used to approximate the underlying streamflow
generating mechanism. Mandelbrot and Wallis* have suggested the use of
fractional noise processes which are characterized by infinite memories and
va!ucs of i # 4. For operational purposes, continuous-parameter fractional
noise processes must be approximated as discrete parameter processes with

large but finite memories.
One approximation suggested by Mandelbrot and Wallis, referred to as
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type 2, is defined as

[}
Y(tlj) = [h() —4) > (t—d)ra-az n(|j) (3-40)
8=t-M0)
where Y(zj) and n(8|/) are random variables associated with the time points
¢ and & at location j, k(j) is the Hurst coefficient, and M (j) denotes the memo-

ry length of the process. Under the assumption that 7(3|j) and n(z|j) are
linearly independent V8 # 7, then

M(j)-1

p(Y1)) =[h() —4] Y [M() —i1%9) u(elj) (3-41)
i=0
M{j)—1
a*(Y|J) =[h()) —1)* ¥ [M() —i]20 o2(elj) (3-42)
i=0
MY =[hG) =10 S [M() — 1700 M(el) (3-43)
i=0
M(j)—1—k
> MG -8 [M() —i— k]P0
P(Y]k’j)= =2 M1 (3-44)
> M) —i2e
i=0

where B(j) = h(j) —%.
To reduce the dominance of the low-frequency components which char-

acterize the type-2 process, Matalas and Wallis® considered a filtered type-2
process which is defined as

XU =[h() =41 'S (pt— oyorszy(s] ) (3-45)

&=pt-M(j)

where X(1j) =Y(pt|j) and p =1 is an integer. It can be shown that
w(X|j) = u(Y]j), o*(X|j) = 0*(Y]j), and N(X|j) =X(Y|j) ¥ p. However,
p(X|k,j) = p(Y|pk,j). Matalas and Wallis® also point out that for two filtered
type-2 processes, where p(u) = p(v), p(X|0,u,v) = p(Y|0,u,v). If, howev-
er, p(u) # p(v), then p(X|0,u,v) # p(Y[0,u,v), and moreover, p(X|k,u,v)
would depend upon ¢ V k, u # v, in which case, the two filtered type-2 proc-
esses could not be stationary with respect to their lagged cross correlations.
To generate synthetic flows at each of L locations, such that statistical

resemblance is achieved with respect to the elements of ©,, the flow at the jth
location is expressed as

Xl =[(h()—4] S (pr—opursn 3 by e(dlr)  (3-46)

d=pi—-M{j)
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e(8lu) is defined such

3y = X (1) — (X)) The ra
:;]::zérz(:’sl.:llmb‘tfc:nlzadcﬂfor ‘ghe lag-one process holds for the process deﬁned
by Eg. (3-46). By considering E[x{rlu)x(flv)] Vu,v, LIL+ 1)/2 equ%l‘ons
with L(L + D/2 unknowns, the values of the b's, may be for'rm_:d. es;
equations may be solved recursiv b's m'terms 0

the second-order statistics characterizing the flows
should be noted that E [x(tlu)x(:lv)], where u # v, involves the summation
0to [Mu)—1 M) — 11,

of [M(u) — jJreo-32[ M (v) — ] Juv-32 over i=

where

ndom variable

-1 if M( < M(v)
W“""'M"”“”“{m;-: ;t‘M(::;EM(u) (3-47)

Cubing both sides of Eq. (3-46) and taking expectations leads to

y(elj) = MX1j) [by]™ [h(j) —4]7° {M%-l [M(j) _,-]asu}}-
— S b3, y(elw)

u=0

(3-48)

=0V j. Equation (3-48) may be solved recursively to obtain the
Given this set of skew coeffi-

, y(elL).
y be obtained in the manner described

where by
set of skew coefficients y(ell), ...

cients, the variate values for e(t]j) ma

for the lag-one process.
Values for w(X1j), o(X1i). MX), p(X|k=1

h(j) = h(X|j) may be estimated from the sequence 0O
jth location. The value for M(j) = M (x|j) may be obtaine

manner. p(X|k—1,j) is substituted for p(Y|k = p.Jj) in Eq.
M{f)—1-p
S () — 1% (MG) —i = p)

i=0

p(Xlk=1,j) = O
2

), p(X|k= 0,u,v), and
f historical flows at the
d in the following
(3-44) whereby

(3-49)

(M) — "
i=0
M(j). To facilitate this solution,

For p =p*V Jj, Eq. (3-49) is solved for
hical representation of p(X |k = 1,j)

Matalas and Wallis® have provided a grap
versus M (j) for various values of p and h(j).

3.7 DISTRIBUTION OF FLOWS

In the above discussions, statistical resemblance wa i i

to a set of low-order statistics used to characterize st:c;?x?;;d\frszit‘:’el;l::: es?[?;t
probabil!'ty distribution of the flows, F[X|t,j], was not considered Un;;er the
assumption of ergodicity, F[X|t,j1 = F[X|j] V t. While the low-order stati :
tics w(X1j), o(X|j), and y(X|j) do characterize a flow sequence they d o
uniquely define F[X|j]. As long as this function is not of inter:sst fheﬁ ltll?:
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choice of the distribution of «(y|4), Flelt,u] = Flelu] ¥ 1 is an operational
matter. Any one of several distributions of e t|u) can be used to achieve statis-
tical rcscmblancq In terms of the low-order statistics. The choice is largely a
matter of convenience and ease with which the variate values of ¢(t|lu) can be
gencralc‘d. a4

If in addition to the low-order statistics, statistical resemblance is ex-
tended to include a specified distribution of X ( 11/), then formidable problems
may be encountered in generating flow sequences. The problems lie in specify-
ing F[elu] given FX|j], To illustrate the nature of these problems, only the
Markov model for the case of a flow sequence at a single site is considered. For
convenience, the location index j is omitted, The flow at time 1 is expressed as

xX(1) = px(t = 1) + be(r) (3-50)

where x(1) =X(1) = u(X), x(1=1) = X(f~1) — -
e = (). (t=1)=X(t=1)=p, p=p(X|k=1), and

It was noted above that, under the assumption of ergodicity,
F[X|t) = F[X|t = 1]V . The sum of two normal variables is normal. Thus if
F[X|t = 1] is assumed to be normal, then F[¢|¢] must be assumed to be nor-
mal.

Quite often streamflow is assumed to follow either a gamma or a log-nor-
mal distribution. The sum of two log-normal variables is not log-normal, and in
general the sum of two gamma variables is not gamma. If F[X] is assumed to
be log-normal, then the Markov model cannot be used to generate synthetic
flows. To accommodate the assumption of log-normally, the following
procedure may be used. Let a be the lower bound of a random variable X,
where (X —a) is log-normally distributed, ¥ =log (X —a), where log
denotes the logarithm of (X — a) to the base ¢, is normally distributed. The
relations between the low-order statistics of X and Y are given by Egs. (3-32),
(3-33), and (3-34).

If Y is assumed to be generated by a Markov process, then

Y() =ry(t—=1) 4+ (1 = )2 o(Y)e(r) (3-51)
where y(t) =Y (t) — u(Y), y(t — 1) — u(Y), and
r=p(Ylk=1) === log {plexp(a(V)~1] + 1) (3-52)
In texms of X, the generating process is
X(t)=a+ {exp[(1 = p)pu(Y)]} [X(t — 1) —a]" &(r) (3-53)
where 8(1) =exp{(1 =" o(Y)e(1)} (3-54)

To generate log-normally-distributed synthetic flows with statistical resem-
blance in terms of u(X), o(X), ¥(X), and p(X|k = 1), it is first necessary to
solve Egs. (3-32), (3-33), (3-34), and (3-52) for the values of a, u(Y), o(Y),
and p(Y|k=1) given the historical estimates of u(X), o(X), y(X), and
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means of Eq. (3-51), normally distributed synthetic flows in
rated, Synthetic flows in real space are obtained via add-

ue of Y(r) (Matalas").
) in terms of the

p(X|k=1). By
log-space may be gene
ing the constant a to the antilog of each val

From Eg. (3-50). the skewness and kurtosis of e(s

skewness and kurtosis of X'( {) are

4 o Qi=pd, (3-55)
Bi(€) = ¥¥e) a=p) B (X) |
6p° (3-56)

_p2

= 3, which is the case for X normally distributed, then Ba(e) =3V p.
d Ba(€) < Ba(X) if Ba(X) < 3. For

Bl = =55 B0 — 7

If B (X)
For p* > 0, Ba(€) > Bo(X) if B(X) > 3, an

p=0, Bi(e) = Bo(X). If
Ba(X) < GTEIP—, (3-57)

then B.(e) = 0, which is not admissible. If inequality (3-57) holds, then the
Markov process cannot be used to generate synthetic flows (Matalas'). In par-
ticular, if e is distributed as gamma, then

2B:(e) —3B,(e) —6=0 (3-58)

268:(X) = 3B,(X) —6 = Q=12 [B(X) —3]

_ 3B oy — oy — = 359

0 —pr [2(1 —p® =3p¥1 —p9]  (3-59)

For X to be distributed as gamma, Q must equal 0. For p* > 0,  # 0 so that
the Markov process cannot be used to generate synthetic flows that are distrib-

uted as gamma if € is assumed to be distributed as gamma.
The above discussions indicate that problems are likely to be encountered

in generating correlated synthetic flows that follow a specified distribution. If
X is to follow a specified distribution, then it cannot be assumed that € neces-

sarily follows the same distribution. A particular model used to achieve statis-
tical resemblance in terms of certain low-order statistics may not be operational

if resemblance is to include a specific distribution for the flows.

3-8 MODEL INCONSISTENCY

Given the mathematical relations between an assumed generating model’s
parameters and the elements of a set of statistics © does not necessarily imply
t!'lilt the model is operational. That is, it may not be possible to solve the equa-
tions expressing these relations because the model is inconsistent with the his-
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torical flows. The Inconsistency relates to the failure of the historical flows to
meet structural constraints of the model (Matalas and Wallis'*).

: To lllustra_te the nature of model inconsistency, the Markov model is con-
sidered. For this '1‘9351 to be operational, BB must be positive definite, that s,
the determinant | BB| must be nonsingular. To illustrate that this may not be
$0, }he flows at two locations are considered, where without loss of generality,
it is assumed that o(X|l)=o(X|2)=1. To simplify notation, let
p = p(Xllt == ]. 1)9 rs p(Xlk = 1'2)‘ and R = p(X'k =0' I.Z). Thus,

e 0
4 [0 ,,] (3-60)
= L R
Mo [R 1] (3-61)
From Eq. (3-36),
Bar=| 1—p* R(1—rp) :
[R(l—rp) 1—r2 ] (3-62)
|BB"| > 0, if
<AL *=pRi(l =Y
e (3-63)

Inequality (3-63) states that there is an upper bound on the values that R? may
assume if p=r, then R® < 1. If, however, p # r, then R?* < 1. The upper
bound becomes smaller as the difference between p and r becomes larger.

It is possible for the historical flows to yield values of p, r, and R which
will not satisfy inequality (3-63), in which case, the Markov model cannot be
used to generate synthetic flow sequences. It is interesting to note that, if the
underlying streamflow process is markovian, the historical flows may yield val-
ues of p, r, and R which do not satisfy inequality (3-63) (Slack'”). Thus
knowledge of the underlying generating process does not assure the use of
that process for generating synthetic flow sequences. Slack' points out that if
the correlations are very near the upper bound, then the probability that syn-
thetic flows cannot be generated with the underlying generating process
increases with the length of the historical flow sequences.

In the case of the fractional noise model,

[M(1)-1. M(2)~1] . 2
{ [M(l) o i]ll{l)-m [M(Z) s I]h(z)—a,-:]
R" = —ggrs - (3-64)
ug 1 [M(1) — iJars H% 1 [M(2) — i Jher-s3
f=0 i=0

where [M(1) — 1, M(2) — 1] is defined by Eq. (3-47). If M(1) =M(2) and
h(1) = h(2), then R? = 1. It is noted that inequality (3-64) does not depend
upon the filter parameter p, and if either M(1) # M(2) or h(1) # h(2), then R*
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oise model to be oper-

For the fractional n
ed the

assume values equal to unity.

ows must yield a value of R? that does not exce

lity (3-64).

arise in one of two ways. First, in the case

d generating processes are the same, inconsis-
That is, the estimated

from their population

cannot
atiohal, the historical fl

upper bound given by inequa
Model inconsistency may

where the underlying and assume
tency may be attributed to statistical sampling errors.

values of the pertinent statistics may differ sufficiently
values to yield inconsistency. Second, the underlying and assumed prf)cesses
s have a multivariate structure which may

may be different. The historical flow

be inconsistent with that implied by the assumed generating process.
Of course, computational errors or machine round-off errors can lead to

model inconsistency. While checks for such errors should be made, the nature

of the structural constraints imposed by an assumed generating process should

also be investigated if model inconsistency arises.

3-9 STATISTICAL BIAS

In the above discussions, the assumption was ma

pertinent statistics forming the set © are statisticall
of 6, is said to be statistically unbiased if E[8;] = 6, With the exception of

f(X), the various estimates given above are not statistically unbiased. Unfor-
tunately, for a particular statistic. the bias does not depend only upon the length
of the historical flow sequence from which the estimate of the statistic is
derived. To date, few studies have been made to describe the nature of statis-

tical bias in relation to the assumed streamflow generating process.
In general, the bias associated with an estimate of a particular statistic
generating process. Because the un-

depends upon the underlying streamflow
derlying generating process is unknown, unbiased estimates of the elements of
ow sequences. Let 6; denote the es-

it cannot be derived from the historical fl
timate of 6; derived from a finite synthetic flow sequence. In effect, 6, is a
biased estimate of ;, which in turn is a biased estimate of 6;. While it may

not be possible to derive an unbiased estimate of @;, an unbiased estimate of

8; can be derived. Given the assumed gellerating model, 8, can be adjusted
accordingly to yield an unbiased estimate, 6;. The following discussions deal
or(X), p(X|k=1), and h(X) = K(X), where the as-

with bias corrections for o
sumed generating processes are Markov and filtered fractional noise models

(Wallis and Matalas'®; Wallis and O’Connell*). Only results for synthetic
flow sequences of length i = 100 are given,

The estimate ¢(X) has expectation E[¢(X)] = a[d(X)], where ofl)
depends upon the assumed generating process. If the process is markovian,
a=f[n, ig(Xlk=AlJ], and if the process is filtered fractional noise
a=f[#, h, (X), M(X), p]. Via Monte Carlo experiments, Wallis and Ma:
talas'® derived values of a for iz = 100 for markovian and filtered fractional

de that the estimates of the
y unbiased. An estimate 6,
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nDiSC models. The results of thcse expeﬁmcnts are given in Tables 3-1 and

3-2 for the Markov process and for the filt i -
M(X)Ip = 1,000, ered fractional noise process where

Table 3.1 a—MARKOV PROCESS: 4 = 100

p(Xlk=1) (1) g-;q 0.2 0.3 04 0S5 06 0.7 08 09
a . 099 099 098 098 097 095 094 090

a—m—

Table 3-2 o—FILTERED FRACTIONAL NOISE
PROCESS: it = 100; M(X)/p = 1,000

p X o6 07 08 09
i 090 088 080 070
5 096 094 090  0.80

10 098 096 092 084

20 098 096 092 0.84

To c.orrect for bias, the estimate of the standard deviation of the histori-
cal flows is defined as

o* (X) = ﬁ) #(X) (3-65)
whereby E[5(X)] = a(l)o* (X) = &(X) (3-66)

Given p(X|k=1), values of E[p(X|k=1)] for 7 = 100 were obtained
by Monte Carlo experiments (Wallis and Matalas'®) and are given in Tables
3.3 and 3-4, where p = p(X|k = 1) and E[p] = E[p(X|k = D)].

Table 33 j VERSUS E[j]—MARKOV PROCESS: /i = 100

0.3 0.4 0.5 0.6 0.7 0.8 09

0.1 0.2
028 038 048 057 066 076 036

P
E[p] | 009 0.18

Table 34 j VERSUS E [ ]—FILTERED FRACTIONAL NOISE PROCESS:
it = 100; M(X)ip = 1,000

p ~IX) g 0.7 0.8 09
p E[p]l p Elp) @ E[p] » E(p]

I 066 058 073 062 080 066 087 071
5 035 029 044 036 057 045 068 052
10 024 019 033 026 045 034 059 045
2 007 013 025 019 036 027 050 037
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synthetic flows such that E[p] = p, it is necessary (o
a value p* > p. Given the value p*, the bias
the synthetic flows is corrected by using
ustrates the procedure for correcting
d the lag-one serial correlation coef-

To generate
replace the historical value p by
in the standard deviation of
o* = f[i1, p*]. The following example ill

for bias in both the standard deviation an -
ficient. Assume a Markov process with &= 10 and p=0.8. The value of p

such that E[p] = 0.8 is taken to be p*. From Table 3-3, it is found by linear
interpolation that p* =0.84, and from Table 3-1 that o* =0.92 for
p = p* =0.84. Thus for generating synthetic flows, o =10and p=0.8 are
replaced by o* = 10/0.92 = 10.87 and p* = 0.84.

Wallis and O’Connell™ have investigated various algorithms for estimat-
ing p(X]k=1) from small samples. Based on an algorithm suggested by
Jenkins and Watts® and Box and Jenkins,2' Wallis and O’Connell suggested

that p(X|k = 1) be replaced by

prxlk = 1) = L= DA (3-67)

S [X() — wOIX(+ D= (0]
where p(Xlk=1) =+ Ty (3-68)
E[p(X|k=1)] = p*(X|k=1) (3-69)

In doing so,
Via Monte Carlo experiments, Wallis and Matalas® derived approximate
values of E[K]. where K is an estimate of the Hurst coefficient /, defined by
Eq. (3-16), for both markovian and fractional noise processes. For a Markov
process, h =4, whereas for a fractional noise process s/ may assume values
other than 4. Values of E[K] for i = 100 are given in Tables 3-5 and 3-6.

Table 3-5 E[K] VERSUS $(X]k= 1)~MARKOV PROCESS: i = 100

0.5 0.6 0.7 0.8 0.9
075 079 082 087

pXxk=n] 0 0.1 02 03 0.4
E[K] 061 065 066 069 071 073

Table 36 E(K] VERSUS h(x), p—FILTERED FRACTIONAL
NOISE PROCESS: n = 100, M(x)/p = 1,000

o M| 06 07 08 09
. 081 082 083 085
5 074 076 078 08
10 071 073 075 079
20 068 071 074 078

For the Markov process, the difference between h =4 and E[K] denotes
the bias in estimating the value s+ =% Unlike the estimates of o(X) and
p(X|k = 1), a correction for this bias cannot be made to achieve E[K] =4. If



GENERATION OF SYNTHETIC FLOW SEQUENCES 73

for some Teason Oone Wishes to generate synthetic sequences such that
E[K] = A . then p(X 1Ik =1) must be adjusted, This adjustment involves
replacing A(X|k = 1) with a value p*(X|k = 1) for which E[K] = K. However,
it should be "?lea .thf“- I doing so, the synthetic sequences will yield
correlograms quite distinct from the historical one particularly if p*(X]k = 1)
is large (Wallis and Matalas?), x
Fm; ﬁltemd-fmcﬁo"al noise processes, bias, the difference between
hx)= K and E[K]‘. - b?. corrected. This correction is made by selecting a
value h*(X), for which E[K] = fi(x) = K. Note that this correction may also
be made by changing the value of p.
: In appiymg t_he Vaﬁf’“s corrections for bias, it should be noted that cor-
recting one statistic may introduce a constraint in correcting another statistic.
Moreover, the corrected Statistics may lead to model inconsistency of the type
discussed above. While it is possible to derive bias corrections for other statis-
tics, either analytically or by Monte Carlo procedures, there is a need to assess

the impact of these corrections on the operational capability of the synthetic
flow generating model.

310 INCOMPLETE DATA SETS

Throughout these discussions, it has been assumed that, at each location, the
historical flow sequences are concurrent and of equal length. In practice, this
assumption is unlikely to hold; sequences may be of unequal length, they may
span different periods of time, or they may be discontinuous over time. More-
over, for some locations of interest, there may exist no historical flow
sequences,

If the historical flow sequences are not concurrent and of equal length, the
assumed generating model may frequently prove to be inconsistent. With in-
complete data sets, the lag-zero variance-covariance matrix M, may be incon-
sistent. That is, M, may not be positive semidefinite. For the lag-one model,
Eq. (3-17), the solution for the elements of the matrix 4 requires the inverse of
M,. If M, i1s inconsistent, its eigenvalues will not all be positive, in which case
some of the elements of A will be complex numbers. In such a case, the
generated flows would themselves be complex numbers. Beard*® and Fiering®
have developed techniques for transforming an inconsistent matrix M, into a
consistent one.

Crosby and Maddock® have pointed out that, for the lag-one model, even
if M, and M, are both consistent, the matrix BB7, defined by Eq. (3-26), may
not be consistent. For a monotone sample, Crosby and Maddock have devel-
oped a technique for obtaining a matrix BB” that is consistent, A monotone
sample is defined as a set of sequences, each of which may have originated at
different points in time and which are all continuous up to the present. While
the technique can be used with the Markov model, it remains to be shown that
it can be applied with other flow generators. Corresponding techniques need to
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be developed for the case where the historical flow sequences are not continu-
ous.

In attempting to generate synthetic flow sequences at ungaged locations,
various problems are likely to be encountered. At each of the ungaged loca-
tions, estimates of some of the statistics forming the set © may be obtained via
regression analysis. For a particular statistic, its estimates at the gaged loca-
tions may be regressed on the physiographic and meteorologic factors that
characterize the drainage basins associated with each of the locations (Benson
and Matalas®). Via the regression relation and the physiographic and meteor-
ologic factors characterizing the drainage basins of the ungaged locations,
estimates for the particular statistic may be obtained for each of the ungaged

locations.

A regression relation for any statistic can be obtained. The question is
whether or not the relation should be used to make estimates of the statistic at
the ungaged locations. Generally, the answer is provided via classical tests of
significance. If, at a preselected level of confidence, the regression relation is
significant, then the relation would be used; otherwise, it would not. Perhaps
adherence to conventional levels of confidence are unwarranted. Less-binding
levels may increase the uncertainty in the estimates derived from “significant™
regression relations, but the planning decisions may be insensitive to the

increased uncertainty.
Apart from the mean and standard deviation, it may be very difficult to

obtain an acceptable regression relation relative to the elements of ©. If an ac-
ceptable relation cannot be developed for a particular statistic, then one may in-
terpret the variations in the estimates of the statistics at the gaged locations as
being due entirely to chance whereby the average over the gaged locations may
be taken as the estimate at each of the ungaged locations, and perhaps, at each

of the gaged locations as well.
However the estimates for the ungaged locations are derived, they do not

assure the ability to generate synthetic flow sequences at the ungaged locations.
Moreover, if the gaged and ungaged locations are combined, it may not be pos-
sible to generate synthetic flow sequences at any of the locations. For example,
with the lag-one model, some of the elements of M, and M,; will be the es-
timates for the ungaged locations. These matrices may not be consistent, nor
perhaps, the matrix BB”. If the matrices prove to be inconsistent, then the es-
timates for the ungaged locations will need to be modified or the matrices ad-

justed to achieve consistency.

3-11 ALTERNATIVE MODELS

The lag-one, Markov, and fractional noise models are by no means exhaustive.
Three alternative models, which have been suggested in the current literature,
are discussed briefly. One of these models is the lag-p model. There are
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perhaps two basic_ reasons for choosing such a model. First, the lag-p
covariances are believed to have a significant effect upon the design of a water-
resource system, and second, the lag-p covariances may allow synthetic flow
sequences to be generated such that statistical resemblance in terms of i # } is
achieved-

At pres.ent, there is little evidence to suggest that the covariances for lag
p > | materially affect a system’s design. Moreover, these covariances are
subject to large sampling errors, and one may question the merit in achieving
statistical resemblance in terms of these covariances. Fiering? has shown that
statistical resemblance in terms of / # § may be achieved by making p sul-
ficiently large. While the lag-p model provides a mathematically convenient
vehicle for achieving this level of statistical resemblance, it does so at consider-
able computational cost, particularly for the multisite, multiseason case.
Because for this model & =4, one must, for each particular streamflow
sequence, find a value for p such that the sample estimates of p derived from
synthetic sequences will yield on the average a value for / that is equal to the
historical estimate. For this model, / tends to the value 4 as » tends to infinity,
where the rate of convergence is inversely related to p. Essentially, increasing
p increases the memory of the process, and thus the rate of convergence of / to
the value # is decreased.

Two processes which seemingly offer greater operational capability than
the lag-p model in achieving statistical resemblance in terms of s are the
broken-line process introduced by Ditlevsen® and being adapted to synthetic
flow generation by Mejia* and by Garcia, Dawdy, and Mejia,”® and the
ARIMA process (Box and Jenkins®!). This latter process has been used to
describe streamflow sequences by Carlson, MacCormick, and Watts® and is
being adapted to synthetic flow generation by O'Connell.®

A broken-line process consists of a summation of a finite number of
simple broken-line processes, which are defined as follows. A simple broken-
line process is a sequence of intersecting line segments, where the projections
of the line segments on the time axis are of equal length, and where the magni-
tude of the intersections are randomly distributed. The projection length is
allowed to vary in a prescribed manner from one simple broken-line process to
another. By selecting appropriate values for the broken-line parameters, which
include a basic projection length and the number of simple broken lines to be
summed, statistical resemblance in terms of /, as well as other elements of O,
can be achieved.

Mandelbrot*! has pointed out that while the broken-line process exhibits a
peculiar kind of nonstationarity, the process is a useful approximation to a frac-
tional noise process. This approximation can be made better by increasing the
number of simple broken-line processes.

The term ARIMA is used to denote an autoregressive-integrated-moving
average process, Such a process is structurally similar to a lag-p autoregressive
process, but with two basic differences. First, the random component for the
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ARIMA .process is a moving average of length g of independent randon.n com-
g = 1. Second, the random variable at

ponents. Foran autoregressive process, ) ) ’
time ¢ denotes a dth order difference of random variables of ot_her time pomt_s
defined by the (d — 1)st difference. For d = 0, the random variable at time 718

d = 0. Thus one

me t. For an autoregressive process,

the random variable at ti .
The difference operation leads to a non-

refers to a (p.d.q) ARIMA process.

stationary process.
O’Connell® has noted that ARIMA processes with p, d, and ¢ small ex-

hibit long-memory characteristics and may be used to generate synthetic flows,
such that statistical resemblance in terms of h can be achieved over the de-
sign life of a water-resource system. While the mathematical tractability of
ARIMA processes is attractive, perhaps a more attractive property for
hydrologic studies is that ARIMA processes can admit correlograms having
negative serial correlation coefficients. Both fractional noise and broken-line
processes have positive correlograms. Multivariate ARIMA synthetic flow
generators are currently being developed (O’Connell, oral communication,

1972).

3-12 COMMENTS

Following the pioneering work of Thomas and Fiering,® interest has grown
rapidly in the development of synthetic flow generators and the use of synthetic
flow sequences in water-resource system planning. Historically, synthetic
flow sequences have been regarded as being of little use by themselves, but
coupled with simulation of a water-resource system, they provide a powerful
tool for system planning. Apart from system planning, synthetic flow
sequences, perhaps with different definitions of statistical resemblance, afford a
means for Monte Carlo solutions to a variety of hydrologic problems.

Hydrologists have long recognized the shortcomings of many classical
statistical procedures in that the assumptions underlying these procedures are
seldom met by hydrologic data. The rather low powers of some tests for serial
dependence, particularly when / > 1, has been noted by Wallis and Matalas.®
Given that streamflow sequences are generated by such models as those dis-
cussed above, it may be extremely difficult to develop analytical solutions for a
body of statistical procedures such that the procedures are compatible with the
assumptions underlying the flow generator. With the availability of large-scale
computers, however, Monte Carlo solutions are not out of reach.

At present, a fairly broad spectrum of models exist for generating synthet-
ic flows. and undoubtedly, new models will be developed for achieving still
greater degrees of statistical resemblance. From the point of view of the water-
resource system planner, it is difficult to justify the need for more complex syn-
thetic flow generators without some assessment of the impact of greater
degrees of statistical resemblance on the decision-making process.

Concurrent with future work on model development, there is need for
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research in a number of areas, among them being the following. One would be
an assessment of the sensitivity of the water-resource planning process to
various degrees of statistical resemblance of synthetic flow generators. As the
complexities of the generators increase, the demands for historical data are
likely to inf:rea_sc. as well as the computational demands. Such assessments
could provide inputs to those concerned with the design of hydrologic data-
collection systems, as well as guidance in the development of synthetic flow
generators, Second, the nature of the bias associated with the statistical es-
timates derived from synthetic flow sequences should be determined, the ef-
fects of the biases on the planning processes assessed, and techniques devel-
oped for bias corrections.

The mathematics for a particular synthetic flow generator do not assure
its operational capability. The historical data may not satisfy the model con-
straints or yield consistent matrices of statistical descriptors, particularly for
ungaged locations or for gaged locations where there are “missing” data, A
closer look at the operational capabilities of synthetic flow generators is war-
ranted.

While numerous problems associated with synthetic flow generators have
been discussed, the problems should in no way detract from the use of synthet-
ic flow sequences in water-resource system planning. The use of these
sequences in planning affords a means of assessing the performances and the
inherent risks associated with alternative system designs. Even under less-
than-favorable circumstances such assessments would be perhaps better than

none.
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